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Abstract- The Ocean Observatories Initiative (OOI) will 
implement ocean sensor networks covering a diversity of oceanic 
environments, ranging from the coastal to the deep ocean. 
Construction will begin in Fall 2009, with deployment phased 
over five years. The integrating feature of the OOI is a 
comprehensive Cyberinfrastructure (CI), whose design is based 
on loosely-coupled distributed services, and whose elements are 
expected to reside throughout the physical components; from 
seafloor instruments to autonomous vehicles to deep sea 
moorings to shore facilities to computing and storage 
infrastructure. The OOI-CI provides novel capabilities for data 
acquisition, distribution, modeling, planning and interactive 
control of oceanographic experiments. The architecture 
comprises six subsystems: four elements address the 
oceanographic science- and education-driven operations of the 
OOI integrated observatory, and two elements provide core 
infrastructure services for the distributed, message-based, 
service-oriented integration and communication infrastructure, 
as well as the virtualization of computational and storage 
resources. All OOI functional capabilities and resources 
represent themselves as services to the observatory network, with 
precisely defined service access protocols based on message 
exchange. This paper presents an overview of the OOI services 
and focuses on the strategy for service-oriented integration and 
the publish-subscribe model for communication.  

I. INTRODUCTION 

The US National Science Foundation is initiating a 
transformation of ocean science with the Ocean Observatories 
Initiative (OOI) [1]. The OOI is designed to provide new, 
persistent, interactive capabilities for ocean science, and has a 
global physical observatory footprint. The OOI Integrated 
Observatory comprises Regional Scale Nodes (RSN) and 
Coastal/Global Scale Nodes (CGSN) providing cabled and 
buoy observatories with mobile instrument platforms, 
respectively. 

The OOI Cyberinfrastructure (CI) [7] constitutes the 
integrating element of the OOI Integrated Observatory. It links 
and binds the physical observatory, computation, storage and 
network infrastructure into a coherent system-of-systems. The 
core capabilities and the principal objectives of the OOI 

Integrated Observatory are collecting real-time data, analyzing 
data, modeling the ocean on multiple scales and enabling 
adaptive and interactive experimentation within the ocean. A 
traditional data-centric CI, in which a central data 
management system ingests data and serves them to users on a 
query basis, is not sufficient to accomplish the range of tasks 
ocean scientists will engage in when the OOI is implemented. 
Instead, a highly distributed set of capabilities are required 
that facilitate: 

 
• End-to-end data preservation and access, 
• End-to-end, human-to-machine and machine-to-machine 

control of how data are collected and analyzed, 
• Direct, closed loop interaction of models with the data 

acquisition process, 
• Virtual collaborations created on demand to drive data-

model coupling and share ocean observatory resources 
(e.g., instruments, networks, computing, storage and 
workflows), 

• End-to-end preservation of the ocean observatory process 
and its outcomes, and 

• Automation of the planning and prosecution of 
observational programs. 

 
The OOI CI provides the software services and user 

interfaces to support these applications [13]; in addition it 
provides the underlying integration infrastructure [14] 
consisting of message-based communication, governance and 
security frameworks, similar to the role of the operating 
system on a computer. The CI also provides the mechanisms 
to execute distributed processes anywhere in the network and 
connect then into a coherent system of systems. 

Section II describes the OOI Integrated Observatory 
Services and their Architecture from a high-level view. 
Section III describes the Common Operating Infrastructure 
(COI) subsystem as the central infrastructure component 
providing communication, governance and security to the 
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Integrated Observatory. In particular, we highlight the 
importance of the COI Messaging Service as the integration 
framework for the system-of-systems. Section IV provides a 
brief summary. 

 

II. INTEGRATED OBSERVATORY SERVICES 

Fig. 1 shows a schematic overview of the main properties of 
the Integrated Observatory functional design as provided by 
the Cyberinfrastructure component. The primary goal is to 
support the activities and applications of: 

 
• Scientific Investigation, supporting researchers in the study 

of environmental processes though observations, 
simulation models and expressive analyses and 
visualizations, with results that directly feed back to 
improve future observations. 

• Education and Participation, supporting education 
application developers, educators and the general public 
for accessing and understanding OOI resources in ways 
suitable for specific target audiences. 

• Community Collaboration, enabling OOI users to share 
knowledge and resources, and to work together in project 
settings and ad hoc communities. 

 
Fig. 1. OOI activities, resources and infrastructure 

 
In support of these activities, a variety of Integrated 

Observatory resources of different type and purpose need to 
be administered, including: 
 
• Observation Plans, providing activity sequences, service 

agreements and resource allocations for observational 
campaigns, and similar templates for event-response 
behaviors; 

• Data Sets, representing observational and derived data and 
data products in the form of data archives and real-time 
continuous data streams; 

• Processes, representing data collection and processing 
workflows that arrange multiple steps involving multiple 
actors and resources; 

• Instruments and marine observatory infrastructure 
elements, such as telemetry systems, GPS and data loggers; 

• Models, including numerical ocean forecast models and 
their configurations, as well as other analysis and event 
detection processes; 

• Knowledge, representing all metadata, ancillary data, 
analysis results, association and correspondence links 
between resources, and knowledge captured in ontologies 
for semantic mediation purposes. 

 
The support for these activities and resources rests on a 

collection of infrastructure services that provide resource 
management, interaction, communication and process 
execution. The CI Capability Container (see Fig. 1 and Fig. 2) 
is the extensible, deployable base unit of CI capabilities. It 
hosts all CI application services in support of activities and 
resource, infrastructure components and local interfaces; and it 
makes them available throughout the Integrated Observatory 
network forming a distributed system-of-systems. 

The Integrated Observatory’s functional capabilities are 
structured into six services networks (i.e., subsystems): four 
elements that address the ocean and Earth science- and 
education-driven operations of the OOI integrated observatory, 
and two elements that provide core infrastructure services for 
the distributed, message-based, service-oriented integration 
and communication infrastructure and the virtualization of 
computational and storage resources. 

 The Sensing and Acquisition services network provides 
capabilities to interface with and manage distributed seafloor 
instrument resources, as well as provide quality control 
services. The Data Management services network provides 
capabilities to distribute and archive data, including cataloging, 
versioning, metadata management, and attribution and 
association services. The Analysis and Synthesis services 
network provides a wide range of services to users, including 
control and archival of models, data analysis and visualization, 
event detection services and collaboration capabilities to 
enable the creation of virtual laboratories and classrooms. The 
Planning and Prosecution services network provides the 
ability to plan, simulate and execute observation missions 
using taskable instruments; it is the CI component that turns 
the OOI into an interactive observatory.   

 The remaining two services networks are the Common 
Execution Infrastructure (CEI) and the Common Operating 
Infrastructure (COI). The CEI provides an elastic computing 
framework to initiate, manage and store processes that may 
range from initial operations on data at a shore station to the 
execution of a complex numerical model on the national 
computing infrastructure and on compute clouds. The COI 
provides core services to manage distributed shared resources 
in a policy-based framework, including a distributed service 
infrastructure for the secure, scalable and fault tolerant 



operation and federation of the operational domains of 
authority comprising the OOI. It includes capabilities to 
manage identity and policy, manage any resource’s life cycle, 
as well as catalog and repository services for observatory 
resources. It also manages interactions with resources on an 
end-to-end basis. An efficient messaging and service bus that 
incorporates security and governance, and provides 
guaranteed delivery, lies at its heart. Service-orientation and 
messaging realize loose coupling of components, resulting in 
the flexibility and scalability that are key in such a complex 
large-scale system-of-systems. All OOI functional capabilities 
and resources represent themselves as services to the 
observatory network, with precisely defined service access 
protocols based on message exchange.  

 
Fig. 2. Capability Container with external interfaces 

 
Fig. 2 depicts a capability container, indicated by the 

octagon shape, with interfaces to local resources and to the 
network environment. Local resources include physical 
resources such as instruments (sensors) and marine 
observatory infrastructure, storage resources such as disks and 
network drives, and computing resources such as grid nodes, 
cloud computing instances, and CPUs on mobile platforms 
such as AUVs (Autonomous Underwater Vehicles). 
Capability container can also be connected to user interfaces, 
external applications and to capability containers in different, 
independent facilities that have their own domains of authority 
and operation. 

No matter where deployed, the capability container provides 
all of the infrastructure and application support required for an 
installation site within the OOI Integrated Observatory 
network. The capability container hosts the six services 
networks and their resource interfaces as depicted in the figure. 
The footprint of a capability container can vary depending on 

the resource constraints of its hosting environment. The 
selection of functional capabilities present in a specific 
capability container depends on the respective needs and 
resource availability at this specific location in the network. 
For instance, on an intermittently-connected instrument 
platform, instrument access, data acquisition and data 
buffering capabilities provided by the Sensing and Acquisition 
services are required, while the Analysis and Synthesis 
capabilities are not. In contrast, at the core installation sites, 
data processing, numerical model integration and event 
response behaviors need to be present. 
 

III. COMMON OPERATING INFRASTRUCTURE 

The Common Operating Infrastructure (COI) [14] provides 
the integration fabric that enables subsystem services to be 
composed to manage complex interactions. The Messaging 
Service of COI provides dynamic routing and interception 
capabilities, a publish-subscribe [11] model for conversations, 
and reliable storage and delivery of messages to intended 
recipients across the network.  

Rich Service Architecture 

The COI architecture is based on the Rich Services pattern 
[4] a type of Service-Oriented Architecture (SOA) that 
provides decoupling between concerns and allows for 
hierarchical service composition. As depicted in Fig. 3, a Rich 
Service comprises several entities: (a) the Service/Data 
Connector, which serves as the sole mechanism for interaction 
between the Rich Service and its environment, (b) the 
Messenger and the Router/Interceptor, which together form 
the communication infrastructure, and (c) the constituent Rich 
Services connected to the Messenger and Router/Interceptor 
that encapsulate various application and infrastructure 
functionalities. 
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Fig. 3. Rich Services pattern  

 
To address service integration, this architecture is organized 

around a message-based communication infrastructure. The 



Messenger is responsible for message transmission between 
communication endpoints. By providing a means for 
asynchronous messaging, the Messenger supports the 
decoupling of Rich Services. The Router/Interceptor manages 
the interception of messages placed on the Messenger and 
their routing. This is useful for the injection of policies 
governing the integration of a set of services. The 
Service/Data Connector encapsulates and hides the internal 
structure of the connected Rich Service, and exports only the 
description and interfaces that the connected Rich Service 
needs to be visible externally. The communication 
infrastructure is only aware of the Service/Data Connector, 
and does not need to know any other information about the 
internal structure of the Rich Service. 

Fig. 4 shows the Rich Services pattern applied to the COI 
architecture; the other five services networks are encapsulated 
as Rich Services connected to the COI messaging 
infrastructure (i.e., the Exchange). This shows the central and 
integrative role of the COI for the entire Integrated 
Observatory system-of-systems. The top of the figure depicts 
the infrastructure services that the COI provides to all 
subsystems.  The COI ensures identity management, pervasive 
and consistent governance and policy enforcement, state 
management and resource management. It also enables 
subsystem services to be composed to handle complex 
interactions, and manages the overall service orchestration. 
The Router/Interceptor allows for flexible composition 
between the infrastructure and application services. In this 
way, there is a clear separation between the business logic and 
its external constraints. At all abstraction levels, infrastructure 
services plugged into the Exchange can modify the interaction 
patterns by re-routing, filtering, or modifying exchanged 
messages. This feature enables the validation and signing of 
messages, and the injection of policies governing the 
integration of a set of services. 

The Rich Services integration strategy enables constituent 
subsystems to evolve independently from the composite 
system. Subsystem functionality is exposed to the OOI 
network as services with defined access interfaces, and the 
only way of interacting within the OOI network is through 

messages. Service-orientation and messaging realize loose 
coupling of components, resulting in flexibility and scalability. 
The complexity of such a large-scale system becomes 
manageable through separate concentration on each concern. 
Each subsystem focuses on the services that it enables and 
assumes that all of the infrastructure services are in place. For 
example, when designing the Sensing and Acquisition 
subsystem, the architecture team emphasizes concerns related 
to instrument control and data acquisition. Instruments can 
belong to individuals or the marine operators, while all of the 
deployment platforms are under the marine operator’s 
authority domain. However, since governance is managed 
seamlessly by infrastructure services, and can be abstracted 
when designing the Sensing and Acquisition services, these 
issues are not of concern to the Sensing and Acquisition 
service developers. 
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Fig. 5. COI Resource Management services 

 
Each service of Fig. 4 is further decomposed according to 

the Rich Services pattern. For instance, Fig. 5 shows the 
internal decomposition for the Resource Management services. 
The Resource Repository service provides references to all 
resources known to the OOI CI. Through the Resource 
Integration service, resources can participate in interaction 
patterns implemented by OOI services (e.g., a storage resource 
may be used to record states of various services). The 
Resource Collaboration service provides the collaboration 
framework between different facilities and the sharing of 

 
Fig. 4. Common Operating Infrastructure services 



resources within the OOI federation. The Resource Lifecycle 
service provides the means to track and manage resources 
throughout their entire lifecycle from development to 
decommissioning.  

The Rich Services architecture provides resource location 
independence while user applications are shielded from the 
complexity of the system and the location of resources. The 
COI subsystem provides the Resource Management services 
that enable seamless use of resources across the entire 
Cyberinfrastructure. Via seamless integration of identity and 
governance services, the COI architecture supports the 
deployment, operation, and distributed management of 
thousands of independently-owned resources of various types 
(e.g., instruments, processes, numerical models and 
simulations) across a core infrastructure operated by 
independent stakeholders, where each stakeholder has 
different policies. 

The COI Messaging Service (Exchange) 

The Exchange (i.e., the COI Messaging Service or the 
Messenger and Router/Interceptor in the Rich Services 
architecture) is the central integrating element of the COI. It 
provides access to the communication mechanisms of 
Exchange Spaces and Exchange Points throughout the system-
of-systems, abstracting from the physical communication 
infrastructure across multiple domains of authority. Client 
applications may publish messages on Exchange Points within 
Exchange Spaces. An Exchange Space represents a 
“community of interest” that collects and controls all of the 
Exchange Points in its scope and enforces policy of use for a 
registered set of users and applications. An Exchange Point is 
represented through a set of named exchanges on one or 
multiple AMQP [2] message brokers. Thereby, the Exchange 
provides a comprehensive, uniform view of a federation of 
message brokers: from the point of view of a 
publish/subscribe client (i.e., producers and consumers of 
messages), the fact that the messaging system is built as a 

federation of independent message brokers and not as a single 
broker is hidden. 

The CI integration strategy determines how individual 
software components integrate into the system-of-systems 
through a message-broker integration infrastructure. The 
communication system of the OOI CI applies messaging as 
the central paradigm of inter-application information exchange, 
realizing the Messaging Service, the integrating element of all 
services. It is part of the Common Operating Infrastructure 
(COI), the subsystem that provides the full set of integration 
frameworks and services (see [14]). 

Message-oriented middleware (MOM) (see [6], [9]) is based 
on the concept of a message as the exclusive means of 
information exchange between the distributed components of 
a system. All information that is passed between two 
components or services is contained in messages exchanged 
asynchronously (i.e., non-blocking) over a communication 
infrastructure. The sender of a message does not wait for the 
message to be delivered or returned; it only waits for the 
MOM to acknowledge receipt of the message. Delivering 
messages to recipients utilizes the concept of queues. An 
application component in a message-oriented architecture only 
knows the incoming queues that it receives messages from as 
well as the outgoing queues it delivers messages to, plus the 
message formats that pertain to these queues. The MOM 
provides the capability for system integrators to connect these 
queues to known endpoints (i.e., addresses) in the network; 
consequently it manages routing, reliable storage and delivery 
of messages to intended recipients across the network. 
Standardization is on the way for the underlying message wire 
transport protocol: the Advanced Message Queuing Protocol 
(AMQP) [2] defines the interactions of a message broker with 
its clients, promising interoperability between message 
brokers of different provenance. 

The left part of Fig. 6 depicts the fundamentals of the CI 
Messaging Service. Message brokers are the central 
infrastructure elements, represented as Exchange Points to all 
clients, responsible for the routing and delivery of messages. 

Fig. 6. OOI CI Messaging Service architecture (left) and exemplar messaging scenario (right) 



Message Clients provide the interfaces to the application logic.  
The right part of Fig. 6 provides an exemplar application 

scenario within the OOI CI. Capability containers host the 
application logic that interconnects using the Messaging 
Service. This is exemplified through an Instrument Agent 
publishing a raw data stream on an Exchange Point (a queue) 
via messaging. Any number of consumers may choose to 
subscribe to such an exchange point. In the example, the data 
processing application as well as the data repository will 
receive the published messages. A data stream is a continuous 
series of related self-contained messages on a given exchange 
point. There is a second exchange point for another data 
product containing processed data that is consumed by an 
event detector process. The physical deployment of all 
applications is irrelevant. The Exchange realizes all 
connectivity.  

Fig. 7 depicts an exemplar scenario of how service clients 
can adapt to the Messaging Service; we have implemented this 
in current prototypes [15]. Services are identified by name 
within the Exchange network throughout the entire system-of-
systems. Services are part of distributed applications; the 
distributed service interaction protocol at every (service) 
endpoint is implemented by a specialized protocol adapter. 
Such protocol adapters are instantiated for each conversation 
instance (see below for further details) through protocol 
factories; the protocol adapters provide the binding element to 
the actual service application and its functionality. A typical 
mechanism of implementing protocol adapters is using Finite 
State Machines (FSM). FSMs represent each distinguishable 
protocol condition as a separate state, with defined transitions 
between states when messages are sent or received, leading to 
very predictable and robust distributed implementations. We 
have prototyped several interaction styles between service 
applications, including direct point-to-point interaction, topic 
based publish/subscribe fan-out queues and worker queues 
that facilitate reliable load-balanced applications. The 
Messaging Service hides the fact that service applications are 
connected to different message brokers that are operated in 
different domains of authority. 
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Finite State Machine
Protocol Adapter
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Fig. 7. Messaging Service and service client adapters prototype 

Communities and Agents 

Our approach in distributed computing is based on the 
premise that independent entities interact in order to pursue 
shared goals. Entities can represent users, processes, resources 
and communities. 

Entities in the system are represented by their agents. Each 
entity (or their agent on their behalf) can form any number of 
relationships with other entities. Relationships are based on 
mutual (bilateral) agreements between two entities, the results 
of a successful negotiation. Each entity tracks the 
consequences (i.e., commitments [9], [16]) of such agreements 
(i.e., contracts) with other entities. Each observable atomic 
action of an entity, such as sending a message, that causes a 
side effect leads to a change and reevaluation of the aggregate 
set of commitments of the entity towards other entities. 

Entities communicate and collaborate within communities. 
A community is a specific type of entity in itself. 
Communities serve multiple purposes in our architecture, 
including providing a backstop for contracts, providing a locus 
for naming, and providing a venue to share resources in some 
uses including infrastructure. A community is represented by a 
specification that defines the rules for joining the community. 
Joining a community requires accepting the rules of the 
community, and the community will provide the registrant 
entity with a local name and address. 

Entities may request to enroll (i.e., participate) in 
communities or can be invited by other member entities into 
the community. Enrollment is a symmetric process of 
negotiation. Entities negotiate the conditions under which they 
participate in the community and vice versa. If agreement is 
reached, the resulting contract builds the basis for relations 
with other community members. 

Communities can form relationships with other 
communities, enabling the members of one community to 
interact with the members of another community, instituting 
the specifications of both communities. By contract, the 
community members are bound to the community 
specification with its rules, so there is no need for explicit 
compliance checking (i.e., policy enforcement) and members 
can interact directly. There might be an imposed requirement 
for members to leave behind audit trails for later evaluation, 
same as a tax rule not being directly enforced with every 
transaction, but which may be audited for compliance to the 
"state" community tax rules later for each member taxpayer. 

We call the set of rules that communities (or other entities) 
impose policy. Policy to access a resource entity for instance 
might be an aggregate of many rules, such as the resource 
owner's rules, the community's rules, and any underlying 
obligations as consequence of membership. 

Conversation Management 

Communication between two entities occurs as part of a 
conversation. A conversation presumes a contract is in place 
between the two entities intending to converse. This contract 
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Fig. 8. Collaboration and policy framework example

must include the common knowledge of an interaction pattern 
that provides a template for the conversation, with the 
conversation being an instantiation of the pattern. The actual 
interaction as part of the conversation must comply with the 
template of the interaction pattern. Each interaction (sending 
and receipt of a message) potentially causes change in the set 
of commitments related to the conversation and, thus, 
indirectly to the commitments between the two entities. 
Interaction patterns are thereby distributed 
Assumption/Commitment specifications, in particular also for 
policy. Each entity can independently monitor the fulfillment 
of the interaction pattern and contract for the other entity and 
for itself (and initiate protective or compensating action 
otherwise). Each party would thus update its commitment 
store based on each message it sends or receives. Each entity 
can engage in as many different conversations with different 
(or the same) entities concurrently as it likes. At any given 
instant, the effective set of commitments from the point of 
view of the entity is defined; each interaction can be traced 
back to a conversation.  

We specify interaction patterns using Message Sequence 
Charts (MSCs, see [7], [9], [12]). We also define a language 
for commitments that are made and released for each 
interaction in an interaction pattern. We provide a logical 
framework to reason over the aggregate set of commitments 
over time and deduce any implications. Currently, we use a 
rules engine to implement such a mechanism. 

The COI provides collaboration, agreement support, and 
policy enforcement capabilities. Fig. 8 illustrates this pattern 
for the base case of a single service provider (instrument 
owner) and consumer (researcher). The pattern generalizes to 
arbitrary numbers of participants in a service orchestration. 

Conceptually, the example captures the establishment of a 
service agreement between two parties; for example, this 
could unfold between a regional cabled observatory (service 
provider) and a buoy-based global observatory (service 
consumer). Each one of the parties has established contractual 
commitments with their respective user communities, 
including membership agreements. Upon the establishment of 
mutual commitments, a contract between the two parties is in 
place. Further, each party operates under its own set of 
policies. The negotiation and contracting process, as well as 
the actual service usage, leads to an interaction pattern 
between the two parties that is constrained by the contractual 
commitments and policy declarations of both parties. 

Because each Capability Container is equipped with plug-
ins for orchestration, governance, policy enforcement, and 
monitoring/audit, the deployment mapping for the 
collaboration and policy framework is straightforward: the 
corresponding interaction interface is stored and accessed CI-
wide. Each party’s Capability Container orchestration 
component executes the projection of the interaction pattern 
on their respective roles to participate in the overall 
collaboration. The governance and policy constraints are 
extracted from the interaction interface and provided to the 
corresponding Capability Container plug-ins for monitoring 
and enforcement. 

The COI, through the use of the CI capability container, 
factors out the common aspects of communication, state 
management, execution, governance, and service presentation 
to provide a highly scalable, secure and extensible model for 
managing user-defined collections of information and taskable 
resources. This ability to integrate resources of different types 
implemented by different technologies is the central value 



 
Fig. 9. Resource, resource agents and resource proxies connected to the Messaging Service 

proposition of the architecture. It provides the basis for an 
integrated observatory network that will remain viable and 
pertinent over multiple decades. 

Protocols are defined through interaction patterns. The 
interaction pattern (or projection thereof) represents the 
interaction interfaces of entities (i.e., components). The 
projection of a protocol on one party can be represented as a 
Finite State Machine (FSM). We use FSMs as protocol 
machines that bind the communication endpoint on an 
asynchronous reliable message-based system to the 
application logic. Fig. 7 shows the use of FSMs as protocol 
adapters for service applications involved in a conversation as 
defined by an interaction pattern. 

Fig. 9 shows an exemplar scenario for the application of 
agents for the management of physical resources such as 
sensors, and of services in a distributed environment. Agents 
interact via the Messaging Service. Services themselves use 
the Messaging Service for inter-service conversations as 
explained above. In this case, the services’ agents provide the 
management and control for the service, such as 
starting/stopping the service and granting access. Finite State 
Machines as protocol adapters ensure that the agents and 
service protocols are always in a consistent distributed state, 
ensuring robustness of the entire system. Service protocol 
adapters provide access to the service; Managed Resource 
Agent protocol adapters provide access to the respective 
resource agents. Resource agents provide monitoring and 
control of resources, advertise and grant access to resource 
capabilities and manage the contractual relations and 
commitments of the resource to its environment on behalf of 

the resource. All these agent interactions occur in form of 
conversations based on defined interaction patterns. Proxy 
Resource Agents provide similar capabilities and interaction 
patterns but act as proxies or supervisors of Managed 
Resource Agents. Thereby, policy can be applied at various 
levels within the system through a chain of responsibility. 

Distributed IPC Facility 

We are currently investigating a special case of community 
called the Distributed Inter-Process Communication Facility 
(DIF) [5]. Entities, representing processes that require inter-
process communication (IPC), enroll in this community and 
are assigned a name valid throughout the community as well 
as an address that the community uses internally to direct 
communication. The resources of the community are local 
endpoints of the DIF, which provide resource allocation 
(open/close a connection to another named endpoint) and 
read/write capabilities. 

This DIF facility is intended to be the underlying distributed 
system primitive within the OOI system-of-systems. As is 
apparent, in conceptual terms, DIFs relate naturally to the 
notion of communities that we motivated in the foregoing. 
Other communities will be defined applying similar patterns 
for other purposes than communication, such as scalable, 
elastic computing environments, with entities including the 
requestors of a service and the responding nodes. 

The power of the DIF model is that it can be stacked in 
order to increase scope. One DIF can leverage a lower level 
DIF for communication purposes and present a DIF facility of 
larger scope to its member entities. Thereby, the design of 



how to architect the communities becomes the driving element 
in the architecture of a distributed system. Any topology and 
architecture is possible here, exceeding pure layered 
architectures. 

IV. SUMMARY 

The Ocean Observatories Initiative faces the enormous 
challenge of building a cohesive distributed system-of-systems 
that incorporates a large number of autonomous and 
heterogeneous systems, deals with instruments and 
computational resources of a wide range of capabilities, serves 
the needs of diverse stakeholders, and accommodates change 
over the timescale of decades. A carefully thought out 
architecture is key to addressing this challenge. We find that 
simplicity wins and a few core principles help us organize the 
OOI properly. These principles include (1) emphasizing loose 
coupling through message-based interactions; (2) recognizing 
the autonomy of the participants by modeling them as agents 
rather than as traditional objects or pure services; (3) 
identifying repeating structures (as evinced in our choice of 
Rich Services, Capability Containers, DIFs, and communities); 
and capturing and making explicit business-level interactions 
through first-class status for policy and governance. 
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